Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Sci Total Environ ; 929: 172584, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38641101

RESUMO

Salinization and sodication have become an important abiotic stress affecting soil fertility and crop production in the western of the Songnen Plain in Northeast China. And rice cultivation is considered as one of the most effective biological methods to reclaim saline-sodic soils and ensure food security. However, it is difficult to select the optimal measures to regulate rice growth for increasing yield, because the independent and comprehensive influences of the soil limitation factors on rice yield are not quantitatively evaluated. In this study, the hierarchical partitioning (HP) and the structural equation model (SEM) were used to quantitatively evaluate the influences of salinization parameters, salt ion concentrations and soil nutrients to identify the dominant limitation factors and obstacle mechanism for rice yield. The results showed that soil pH was the key index in salinization parameters, [CO32- + HCO3-] was the key index in salt ion concentrations and available nitrogen (AN) was the key index in soil nutrients to impact rice yield, which independent influences reached 53.7 %, 45.4 % (negative) and 53.2 % (positive), respectively. Soil pH was determined by [CO32- + HCO3-], and the negative effect of alkali stress on rice yield mainly caused by [CO32- + HCO3-] was greater than that of salt stress mainly caused by [Na+] in saline-sodic paddy fields. Among the soil chemical factors, soil pH and AN were the most important explanatory variables of rice yield in saline-sodic paddy fields, which standardized total effects were - 0.32 and 0.40, respectively. Furthermore, the AN showed a more significant negative correlation with soil pH and a higher yield-increasing potential in severe saline-sodic soils (9 ≤ pH < 10) than that in moderate saline-sodic soils (8 ≤ pH < 9). Therefore, decreasing [CO32- + HCO3-] and increasing the content of AN are key to improve rice yield in saline-sodic paddy fields.

2.
Sci Total Environ ; 926: 171856, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522531

RESUMO

Optimizing planting spacing is a common agricultural practice for enhancing rice growth. However, its effect on the accumulation of cadmium (Cd) and phenanthrene (Phen) in soil-rice systems and the response mechanisms of rhizobacteria to co-contaminants remain unclear. This study found that reducing rice planting spacing to 5 cm and 10 cm significantly decreased the bioavailability of Cd (by 7.9 %-29.5 %) and Phen (by 12.9 %-47.6 %) in the rhizosphere soil by converting them into insoluble forms. The increased accumulation of Cd and Phen in roots and iron plaques (IPs) ultimately led to decreased Cd (by 32.2 %-39.9 %) and Phen (by 4.2 %-17.3 %) levels in brown rice, and also significantly affected the composition of rhizobacteria. Specifically, reducing rice planting spacing increased the abundance of low-abundance but core rhizobacteria in the rhizosphere soil and IPs, including Bacillus, Clostridium, Sphingomonas, Paenibacillus, and Leifsonia. These low-abundance but core rhizobacteria exhibited enhanced metabolic capacities for Cd and Phen, accompanied by increased abundances of Cd-resistance genes (e.g., czcC and czcB) and Phen-degradation genes (e.g., pahE4 and pahE1) within the rhizosphere soil and IPs. Reduced planting spacing had no noticeable impact on rice biomass. These findings provide new insights into the role of low-abundance but core rhizobacterial communities in Cd and Phen uptake by rice, highlighting the potential of reduced planting spacing as an eco-friendly strategy for ensuring the safety of rice production on contaminated paddy soils.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Poluentes do Solo/análise , Ferro/análise , Solo , Rizosfera
3.
J Hazard Mater ; 469: 133846, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412644

RESUMO

The utility of endophytic bacteria in Cadmium (Cd) remediation has gained significant attention due to their ability to alleviate metal-induced stress and enhance plant growth. Here, we investigate C. metallidurans CML2, an endophytic bacterial strain prevalent in rice, showing resilience against 2400 mg/L of Cd(II). We conducted an in-depth integrated morphological and transcriptomic analysis illustrating the multifarious mechanisms CML2 employs to combat Cd, including the formation of biofilm and CdO nanoparticles, upregulation of genes involved in periplasmic immobilization, and the utilization of RND efflux pumps to extract excess Cd ions. Beyond Cd, CML2 exhibited robust tolerance to an array of heavy metals, including Mn2+, Se4+, Ni2+, Cu2+, and Hg2+, demonstrating effective Cd(II) removal capacity. Furthermore, CML2 has exhibited plant growth-promoting properties through the production of indole-3-acetic acid (IAA) at 0.93 mg/L, soluble phosphorus compounds at 1.11 mg/L, and siderophores at 22.67%. Supportively, pot experiments indicated an increase in root lengths and a decrease in Cd bioaccumulation in rice seedlings inoculated with CML2, consequently reducing Cd translocation rates from 43% to 31%. These findings not only contribute to the understanding of Cd resistance mechanisms in C. metallidurans, but also underscore CML2's promising application in Cd remediation within rice farming ecosystems.


Assuntos
Cupriavidus , Metais Pesados , Oryza , Poluentes do Solo , Cádmio/análise , Ecossistema , Biodegradação Ambiental , Metais Pesados/toxicidade , Metais Pesados/análise , Poluentes do Solo/análise , Raízes de Plantas , Solo
4.
Environ Pollut ; 341: 122900, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952920

RESUMO

Tebuconazole (TBZ) and azoxystrobin (AZX) are fungicides frequently used in rice cultivation. Despite protecting crops against fungal diseases, these compounds can contaminate the natural environments close to the crops, exerting negative effects on non-target organisms, the present study aimed to characterize the contamination by fungicides of a river that flows in an area dominated by rice cultivation in the north of the state of Santa Catarina, SC, Brazil. Concentrations of TBZ and AZX found in the field were used to evaluate their negative effects on development, biochemical biomarkers and histopatology of the liver of a native tadpole species, the hammerfrog (Boana faber). Tadpoles were exposed for 16 days to the lowest (1.20 µg/L) and highest (2.60 µg/L) concentration of TBZ, lowest (0.70 µg/L) and highest (1.60 µg/L) concentration of AZX, and the mix of both fungicides at lowest and highest concentration of each found in field analyses. Exposure to the lower TBZ concentration and both concentrations of the Mix accelerated the development of tadpoles. AZX caused an increase in the activities of glutathione S-transferase (GST), carboxylesterase (CbE) and glucose-6-phosphate dehydrogenase (G6PDH) in the liver, an increase in the levels of protein carbonyls (PC) in the liver and an increase in the activity of acetylcholinesterase (AChE) in muscle of tadpoles. TBZ, on the other hand, generated an increase in GST, G6PDH, PC and histopathological severity scores in liver and in muscle AChE activity. The effects were more intense in the groups exposed to the Mix of contaminants. No treatment altered brain AChE. The data showed that the fungicides from in rice cultivation found in natural aquatic environments around the crops pose risks to the health of the animals, compromising their metabolism and development.


Assuntos
Fungicidas Industriais , Oryza , Poluentes Químicos da Água , Animais , Fungicidas Industriais/toxicidade , Acetilcolinesterase , Produtos Agrícolas , Glutationa Transferase , Poluentes Químicos da Água/toxicidade , Larva
5.
Environ Monit Assess ; 195(12): 1473, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37964173

RESUMO

Various stressors threaten rice fields' productivity. Microplastics (MPs) are ubiquitous pollutants that accumulate in agricultural soils, effectively impairing agroecosystem functioning. The study investigates the MPs pollution status of rice fields and compares it with that of non-paddy vegetable farms under contrasting management practices. Possible sources of MPs in the fields are identified. Additionally, the relationships between MPs abundance and soil characteristics are investigated. This provides innovative insights into the possible impact of MPs on soil health and functioning. Density separation using saturated NaCl solution and oxidative organic matter digestion using Fenton's reagent were employed to extract the MPs. The extracted MPs were categorized according to shape, size, and color. The results indicated that the paddies (1952.86±114.36 particles/kg) contained significantly more MPs than did the non-paddies (1134.44±221.52 particles/kg). Beads (53.75%) and fibers (28.46%) were the most common MPs. More than 90% of all MPs recovered from the fields were less than 1 mm in size. Of the 16 color groups identified, the colors silver, white, and black were the most abundant. Sewage sludge application and mulching were recognized as the primary sources of MPs in the paddies, with sludge contributing more than mulching. Microplastics were shown to potentially alter vital soil characteristics. Rice fields are otherwise overlooked reservoirs of MPs. More attention should be paid to raising awareness of their role as MPs accumulation hotspots among governmental bodies, researchers, producers, and citizens. Contributing MPs sources need to be identified, and managerial decisions should consider the polluting capacity of different practices.


Assuntos
Microplásticos , Oryza , Plásticos , Esgotos , Irã (Geográfico) , Monitoramento Ambiental , Solo
6.
PeerJ ; 11: e15682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868055

RESUMO

In the 1920s, Lewis Stadler initiated the introduction of permanent improvements to the genetic makeup of irradiated plants. Since then, studies related to breeding mutations have grown, as efforts have been made to expand and improve crop productivity and quality. Stadler's discovery began with x-rays on corn and barley and later extended to the use of gamma-rays, thermal, and fast neutrons in crops. Radiation has since been shown to be an effective and unique method for increasing the genetic variability of species, including rice. Numerous systematic reviews have been conducted on the impact of physical mutagens on the production and grain quality of rice in Southeast Asia. However, the existing literature still lacks information on the type of radiation used, the rice planting materials used, the dosage of physical mutagens, and the differences in mutated characteristics. Therefore, this article aims to review existing literature on the use of physical mutagens in rice crops in Southeast Asian countries. Guided by the PRISMA Statement review method, 28 primary studies were identified through a systematic review of the Scopus, Science Direct, Emerald Insight, Multidisciplinary Digital Publishing, and MDPI journal databases published between 2016 and 2020. The results show that 96% of the articles used seeds as planting materials, and 80% of the articles focused on gamma-rays as a source of physical mutagens. The optimal dosage of gamma-rays applied was around 100 to 250 Gy to improve plant development, abiotic stress, biochemical properties, and nutritional and industrial quality of rice.


Assuntos
Mutagênicos , Oryza , Oryza/genética , Melhoramento Vegetal , Mutação , Produtos Agrícolas/genética
7.
Sci Total Environ ; 904: 166713, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657548

RESUMO

Rice cultivation has been demonstrated to have the ability to improve saline-sodic soil. Whether this human activity can influence the accumulation of soil organic carbon (SOC) in saline-sodic soil remains unclear. In this study, the impact of rice cultivation across different planting durations (1, 5, 10, 27 years and abandoned land) on the carbon (C) levels, derived from plant residues and microbial necromass, were assessed. Compared to the control, plant residues and microbial necromass greatly contributed to the carbon accumulation. For the short-term of rice cultivation (1-10 years), the C content originated from both microbial and plant residues gradually accumulated. In the prolonged cultivation phase (27Y), plant residues and microbial necromasses contributed 40.82 % and 21.03 % of the total SOC, respectively. Additionally, rice cultivation significantly reduced the pH by 13.58-22.51 %, electrical conductivity (EC) by 60.06-90.30 %, and exchangeable sodium percentage (ESP) by 60.68-78.39 %. In contrast, total nitrogen (TN), total phosphorus (TP), SOC, particulate organic C, mineral-bound organic C, and microbial biomass all saw statistical increases. The activities of extracellular enzymes in paddy soils, such as peroxidase, phenol oxidase, and leucine aminopeptidase, were significantly reduced, and the decomposition of lignin, phenol, and amino sugars by soil microorganisms was consequently suppressed. The partial least squares path modeling results demonstrated that rice cultivation affected the accumulation of plant and microbial components via the corresponding chemical properties (pH, EC, and ESP), nutrient content (TN, TP, and SOC), enzyme activity (LAP, PER, and POX), microbial biomass, and plant biomass. These findings are crucial for understanding the organic carbon sequestration potential of sodic saline soils.


Assuntos
Oryza , Solo , Humanos , Solo/química , Carbono , Biomassa , Lignina , Minerais , Microbiologia do Solo
8.
Chemosphere ; 344: 140326, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37777091

RESUMO

Optimizing water and nitrogen management to minimize NH3 volatilization from paddy fields has been extensively studied. However, there is limited research on the combined effect of different rates of organic fertilizer substitution (OFS) and irrigation methods in rice cultivation, exploring an effective water and nitrogen combination is beneficial to mitigate NH3 volatilization. To address this gap, we conducted a two-year field experiment to investigate NH3 volatilization under different OFS rates (0%, 25%, and 50%) combined with continuous flooding irrigation (CF) and alternate wet and dry irrigation (AWD). Our findings revealed that NH3 fluxes exhibited similar emission patterns after each fertilization event and significantly decreased with increasing rates of OFS during the basal stage. Compared to no substitution (ON0), the low (ON25) and high (ON50) rates of OFS reduced cumulative NH3 emissions by 18.9% and 16.6%, and lowed NH3 emission factors (EFs) by 26.7% and 23.3%, respectively. Although OFS resulted in a slight reduction in rice yield, yield-scaled NH3 emissions were significantly reduced by 11.9% and 6.5% under the low and high substitution rates, respectively. This reduction was mainly attributed to the slight yield reduction observed at the low substitution rate. Furthermore, when combined with ON0, AWD irrigation had the potential to increase NH3 volatilization. However, this increase was not observed when combined with ON25 and ON50. During each fertilization stage, floodwater + concentration emerged as the prominent environmental factor influencing NH3 volatilization, showing a stronger and more positive correlation compared to other factors such as floodwater pH, soil pH, and NH4+ concentration. Based on our findings, we recommend implementing effective water and nitrogen management strategies to minimize NH3 volatilization in rice cultivation. This involves applying a lower rate of organic fertilizer substitution during the basal stage, maintaining high water levels during fertilization, and implementing mild AWD irrigation during non-fertilization periods.


Assuntos
Amônia , Oryza , Amônia/análise , Fertilizantes/análise , Volatilização , Solo , Nitrogênio/análise , Água , Agricultura
9.
Plants (Basel) ; 12(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37765479

RESUMO

The characterization of the mechanisms conferring resistance to herbicides in weeds is essential for developing effective management programs. This study was focused on characterizing the resistance level and the main mechanisms that confer resistance to glyphosate in a resistant (R) Steinchisma laxum population collected in a Colombian rice field in 2020. The R population exhibited 11.2 times higher resistance compared to a susceptible (S) population. Non-target site resistance (NTSR) mechanisms that reduced absorption and impaired translocation and glyphosate metabolism were not involved in the resistance to glyphosate in the R population. Evaluating the target site resistance mechanisms by means of enzymatic activity assays and EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene sequencing, the mutation Pro106Ser was found in R plants of S. laxum. These findings are crucial for managing the spread of S. laxum resistance in Colombia. To effectively control S. laxum in the future, it is imperative that farmers use herbicides with different mechanisms of action in addition to glyphosate and adopt Integrate Management Programs to control weeds in rice fields of the central valleys of Colombia.

10.
Environ Sci Technol ; 57(36): 13292-13303, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37646073

RESUMO

Identification of the spatial distribution, driving forces, and future trends of agricultural methane (AGM) emissions is necessary to develop differentiated emission control pathways and achieve carbon neutrality by 2060 in China, which is the largest emitter of AGM. However, such research is currently lacking. Here, we estimated China's AGM emissions from 2010 to 2020 and then decomposed six factors that affect AGM emissions via the LMDI model. The results indicated that the AGM emissions in China in 2020 were 23.39 Tg, with enteric fermentation being the largest source, accounting for 43.9% of the total emissions. A total of 39.3% of the AGM emissions were from western China. The main driver of AGM emission reduction was emission intensity, accounting for 59% and 33.7% of methane emission reduction in the livestock sector and rice cultivation, respectively. Additionally, higher levels of urbanization contributed to AGM emission reductions, accounting for 31.3% and 43.0% of the livestock sector and rice cultivation emission reductions, respectively. Based on the SSP-RCP scenarios, we found that China's AGM emissions in 2060 were reduced by approximately 90% through a combination of technology measures, behavioral changes, and innovation policies. Our study provides a scientific basis for optimizing existing AGM emission reduction policies not only in China but also potentially in other high AGM-emitting countries, such as India and Brazil.


Assuntos
Agricultura , Oryza , Animais , Tecnologia , Carbono , China , Gado , Metano
11.
Environ Res ; 237(Pt 1): 116912, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619638

RESUMO

The use of composted sewage sludge (CSS) and centrate as alternatives to synthetic fertilizers in rice cultivation holds great promise. This study aims to determine the effects of varying doses and timings of centrate derived from anaerobically digested sewage sludge on rice yield, nutrient quality, and soil fertility when applied as a topdressing to rice fields fertilized with CSS. At the panicle initiation (PI) stage, 100, 300, and 500 kg N ha-1 of centrate topdressing (CT100, CT300, and CT500, respectively) was applied. In addition, different topdressing timings at a total dose of 500 kg N ha-1 were evaluated, including a two-split application (40% at active tillering (AT) and 60% at PI; CT500S2) and a three-split application (40% at AT + 40% at PI + 20% at heading; CT500S3). At a rate of 160 kg N ha-1, CSS was used as a base fertilizer in all treatments. A control treatment received synthetic fertilizers at a rate of 160 kg N ha-1 as a base application and 100 kg N ha-1 as a topdressing. Results showed that CSS-treated rice plants exhibited a lower N status and leaf chlorophyll content during the vegetative growth stage; however, the split application of centrate topdressing improved plant N status, resulting in an increase in biomass and grain yield. Centrate and CSS tended to increase the mineral content of rice; nevertheless, a significant accumulation of As in grains raised concerns about food safety. Combining CSS and centrate has the potential to increase rice production, improve grain nutritional value, and decrease reliance on synthetic fertilizers. However, it is essential to optimize this fertilization, mitigate environmental risks, and ensure food safety by employing appropriate fertilization dosing and timing as well as appropriate field management strategies.

12.
Environ Sci Pollut Res Int ; 30(40): 92950-92962, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37501024

RESUMO

Rice cultivation on paddy soil is commonly associated with emissions of methane, a greenhouse gas, but rice varieties may differ in their actual level of emissions. This study analysed methane emissions associated with 22 distinct rice genotypes, using gas chromatography, and identified the cultivar Heijing 5 from northern China as a potential low-methane rice variety. To confirm this and to examine whether Heijing 5 can perform similarly at higher latitudes, Heijing 5 was cultivated in field trials in China (lat. 32° N) and Sweden (lat. 59° N) where (i) methane emissions were measured, (ii) methanogen abundance in the rhizosphere was determined using quantitative PCR, and (iii) the concentrations of nutrients in water and of heavy metals in rice grain and paddy soil were analysed. The results demonstrated that the low-methane rice cultivar Heijing 5 can successfully complete an entire growth period at high-latitude locations such as central Sweden. Massively parallel sequencing of mRNAs identified candidate genes involved in day length and cold acclimatisation. Cultivation of Heijing 5 in central Sweden was also associated with relatively low heavy metal accumulation in rice grains and lowered nutrient losses to neighbouring water bodies.


Assuntos
Agricultura , Oryza , Agricultura/métodos , Temperatura , Metano/análise , Solo/química , China , Óxido Nitroso/análise
13.
Acta Trop ; 244: 106954, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37244404

RESUMO

The rice agroecosystem provides suitable breeding habitat for many malaria vector species, and  rice-adjacent communities are consequently exposed to a greater malaria transmission risk than non-rice-associated communities. As part of efforts to expand rice production in Africa, sustainable and climate-adapted practices such as the System of Rice Intensification (SRI) are being promoted. SRI encourages the use of organic fertilisers (OFs) such as cow and chicken dung, as opposed to inorganic industrially produced fertilisers, due to their lower resource cost, apparent benefit to the rice agroecosystem and as a means to reduce the greenhouse gas emissions associated with the production of industrial fertilisers. However, the impact of OFs on mosquito fauna is not well documented and may have knock-on consequences on malaria transmission risk. Here, we demonstrate, using dual choice egg count assays, that both cow and chicken dung modulate the oviposition behaviour of Anopheles arabiensis, a major malaria vector in Sub-Saharan Africa. A significantly reduced proportion of eggs were laid in water treated with either cow or chicken dung compared to untreated water, with higher dung concentrations resulting in further reduced proportions. When presented in competition, significantly fewer eggs were laid in water treated with chicken dung than with cow dung. Moreover, there was no evidence of egg retention in any experiment, including in no-choice experiments where only dung-containing dishes were available. These results suggest both cow and chicken dung may act as oviposition deterrents to malaria vector species and that the application of manure-based OFs in rice agriculture may modulate the oviposition behaviour of An. gambiae s.l. within agroecosystems. Quantification of the ammonia present in dung-infused water showed higher concentrations were present in the chicken dung infusion, which may be one contributing factor to the difference in observed deterrence between the two dung types. Deterrence of mosquito oviposition in OF-treated farms may potentially affect the overall production of malaria vectors within rice fields and their contribution to local malaria transmission.


Assuntos
Anopheles , Malária , Animais , Feminino , Bovinos , Esterco , Fertilizantes , Oviposição , Mosquitos Vetores , Melhoramento Vegetal , Água
14.
Artigo em Inglês | MEDLINE | ID: mdl-36768102

RESUMO

Sustainable practices in rice cultivation require effective farming management concerning environmental and human health impacts. In this study, three rice cultivation systems, namely low-land, upland, and terraced rice in the Mae Chaem District, Chiang Mai Province, were assessed and the carbon footprint (CF), water footprint (WF), and human and ecotoxicological impacts were compared from pesticide application. The results showed that the highest CF intensity was observed in terraced rice with 1.15 kg CO2eq kg-1 rice yield, followed by lowland rice (1.02 kg CO2eq kg-1 rice yield) and upland rice (0.17 kg CO2eq kg-1 rice yield) fields. Moreover, lowland rice cultivation generated the highest total WF with 1701.6 m3 ton-1, followed by terraced rice (1422.1 m3 ton-1) and upland rice (1283.2 m3 ton-1). The lowland rice fields had the most impact on human health and freshwater ecotoxicity, followed by the terraced and upland rice cultivation systems. The results also showed that most of the pesticides remaining in soils were chlorpyrifos (98.88%), butachlor (96.94%), and fipronil (95.33%), respectively. The substances with the greatest distributions in freshwater were acephate (56.74%), glyphosate (50.90%), and metaldehyde (45.65%), respectively. This study indicated that, with more agricultural inputs, higher CF, WF, human health impacts, and freshwater ecotoxicity were generated. Although the use of pesticides in the study areas did not exceed the recommendations on the packaging, glyphosate and chlorpyrifos are restricted in Thailand, so it is necessary to monitor their use due to their long-term health effects.


Assuntos
Clorpirifos , Oryza , Praguicidas , Humanos , Tailândia , Agricultura/métodos , Praguicidas/toxicidade , Água
15.
Environ Res ; 218: 115041, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36513129

RESUMO

Rice cultivation regions have a high density of open water networks to meet the requirements of rice growth and production. These open water networks have a significant risk of carbon (C) emissions due to agricultural production, but the C emissions from these waters are not clearly recorded in previous studies. Therefore, this study aimed to explore the pattern and internal mechanism of methane (CH4) and carbon dioxide (CO2) emissions from multiple types of waters (i.e., river, fish pond, reservoir, and ditch) in a typical rice cultivation region in southwestern China. The annual CH4 and CO2 fluxes were higher in the downstream river (2.79-94.89 and 39.39-1699.98 mg m-2 h-1) and ditch (8.80-74.99 and 123.43-542.65 mg m-2 h-1, respectively) and lower in the reservoir (-0.67 to 3.45 and -239.15 to 141.50 mg m-2 h-1) (P < 0.05). The monthly trends of CH4 and CO2 fluxes from the middle river and ditch were driven by interactive reactions of rice cultivation practices and precipitation. In contrast, the emission patterns of CH4 and CO2 from the lower river, upper river, and fish pond were mainly driven by domestic sewage discharge, precipitation, and aquaculture practices, respectively. This study suggested that river and ditch were more sensitive to C emissions than other waters, and the rice production period was the critical period for controlling C emission. Although rice paddy soils yield more cumulative emissions of CH4, water networks in rice cultivation regions were possible hotspots for C emissions due to the higher emission intensities, which were largely overlooked before. Thus, it is necessary to refine and promote practices to better mitigate C emissions from waters in rice cultivation regions in the future.


Assuntos
Oryza , Animais , Dióxido de Carbono/análise , Água , Estações do Ano , Agricultura , Solo , Metano/análise , China , Peixes , Óxido Nitroso
16.
Environ Pollut ; 318: 120854, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509351

RESUMO

Paddy fields in China contributed to one third of the global cropland ammonia (NH3) emission inventory, while rice accounted for half of cereal consumption, necessitating exhaustive considerations of the balance between NH3 emissions abatement and food demand. The concept of yield-scaled emission intensity (emissions per unit crop production) has the potential to guide sustainable intensification strategies, yet its application to NH3 emissions remains poorly understood. Here, by constructing novel crop-specific models for single rice production and NH3 emissions in the Middle and Lower Yangtze River Basin (LYRB) as a case study, the relationships between fertilizer N application and yield-scaled NH3 were estimated. Contrary to our hypothesis of a tipping point, our results showed that yield-scaled NH3 curves could not directly identify optimal nitrogen (N) rates. However, the benefit of lower N fertilizer rate on NH3 abatement consistently outweighed the risk of yield loss. The exponential relationships between yield-scaled NH3 and N surplus allowed us to estimate the N surplus criterion as 15.6 kg N ha-1 (or 190 kg N ha-1 fertilizer N rate) for the LYRB. Under the N surplus criterion, NH3 emissions can be reduced by 23-27% without severely impacting rice yield, compared to the N rate required for the highest yield. Moreover, five major controlling factors for yield-scaled NH3 were estimated by random forest models, ranked in order of importance as N rate, total N, K rate, mean annual precipitation, and soil organic carbon. Among the agricultural practices (irrigation, tillage, and fertilizer management), deep placement was the most effective measure to reduce yield-scaled NH3, showing 48% reduction potential, followed by proper N splitting frequency (43%). Overall, this study highlights the efficacy of N application optimization and targeted farm management in mitigating NH3 emission while maintaining crop productivity.


Assuntos
Nitrogênio , Oryza , Nitrogênio/análise , Amônia/análise , Solo , Carbono , Fertilizantes/análise , Rios , Óxido Nitroso/análise , Agricultura/métodos , China
17.
Parasit Vectors ; 15(1): 472, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36527072

RESUMO

BACKGROUND: Malaria vectors have a strong ecological association with rice agroecosystems, which can provide abundant aquatic habitats for larval development. Climate-adapted rice cultivation practices, such as the System of Rice Intensification (SRI), are gaining popularity in malaria-endemic countries seeking to expand rice production; however, the potential impact of these practices on vector populations has not been well characterised. In particular, SRI encourages the use of organic fertilisers (OFs), such as animal manures, as low-cost and environmentally friendly alternatives to industrially produced inorganic fertilisers. We therefore set out to understand the effects of two common manure-based OFs on the life history traits of two major African malaria vectors, Anopheles arabiensis and Anopheles gambiae sensu stricto (s.s.). METHODS: Larvae of An. arabiensis and An. gambiae s.s. were reared from first instar to emergence in water containing either cow or chicken dung at one of four concentrations (0.25, 0.5, 0.75, and 1.0 g/100 ml), or in a clean water control. Their life history traits were recorded, including survival, development rate, adult production, and adult wing length. RESULTS: Exposure to cow dung significantly increased the development rate of An. gambiae s.s. independent of concentration, but did not affect the overall survival and adult production of either species. Chicken dung, however, significantly reduced survival and adult production in both species, with a greater effect as concentration increased. Interestingly, An. arabiensis exhibited a relative tolerance to the lowest chicken dung concentration, in that survival was unaffected and adult production was not reduced to the same extent as in An. gambiae s.s. The effects of chicken dung on development rate were less clear in both species owing to high larval mortality overall, though there was some indication that it may reduce development rate. Adult wing lengths in males and females increased with higher concentrations of both cow and chicken dung. CONCLUSIONS: Our findings suggest that manure-based OFs significantly alter the life history traits of An. gambiae s.s. and An. arabiensis. In both species, exposure to cow dung may improve fitness, whereas exposure to chicken dung may reduce it. These findings have implications for understanding vector population dynamics in rice agroecosystems and may inform the use of OFs in SRI, and rice agriculture more widely, to avoid their adverse effects in enhancing vector fitness.


Assuntos
Anopheles , Traços de História de Vida , Malária , Oryza , Animais , Masculino , Feminino , Bovinos , Malária/prevenção & controle , Larva , Esterco , Galinhas , Mosquitos Vetores , Fertilizantes , Água
18.
Molecules ; 27(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35807216

RESUMO

Rice cultivation is one of the most significant human-created sources of methane gas. How to accurately measure the methane concentration produced by rice cultivation has become a major problem. The price of the automatic gas sampler used as a national standard for methane detection (HJ 38-2017) is higher than that of gas chromatography, which greatly increases the difficulty of methane detection in the laboratory. This study established a novel methane detection method based on manual injection and split pattern by changing the parameters of the national standard method without adding any additional automatic gas samplers. The standard curve and correlation coefficient obtained from the parallel determination of methane standard gas were y = 2.4192x + 0.1294 and 0.9998, respectively. Relative standard deviation (RSD, <2.82%), recycle rate (99.67−102.02%), limit of detection (LOD, 0.0567 ppm) and limit of quantification (LOQ, 0.189 ppm) of this manual injection method are satisfying, demonstrating that a gas chromatography-flame ionization detector (GC-FID), based on manual injection at a split ratio (SR) of 5:1, could be an effective and accurate method for methane detection. Methane gases produced by three kinds of low-methane rice treated with oxantel pamoate acid, fumaric acid and alcohol, were also collected and detected using the proposed manual injection approach Good peak shapes were obtained, indicating that this approach could also be used for quantification of methane concentration.


Assuntos
Metano , Oryza , Cromatografia Gasosa/métodos , Ionização de Chama , Gases/análise , Humanos , Metano/análise
19.
Sci Total Environ ; 810: 152210, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890681

RESUMO

Although croplands are known to be strong sources of anthropogenic N2O, large uncertainties still exist regarding their emission factors, that is, the proportion of N in fertilizer application that escapes to the atmosphere as N2O. In this study, we report the results of an experiment on the N2O flux in a landscape dominated by rice cultivation in the Yangtze River Delta, China. The observation was made with a closed-path eddy covariance system on a 70-m tall tower from October 2018 to December 2020 (27 months). Temperature and precipitation explained 78% of the seasonal and interannual variability in the observed N2O flux. The growing season (May to October) mean flux (1.14 nmol m-2 s-1) was much higher than the median flux found in the literature for rice paddies. The mean N2O flux during the observational period was 0.90 ± 0.71 nmol m-2 s-1, and the annual cumulative N2O emission was 7.6 and 9.1 kg N2O-N ha-1 during 2019 and 2020, respectively. The corresponding landscape emission factor was 3.8% and 4.6%, respectively, which were much higher than the IPCC default direct (0.3%) and indirect emission factors (0.75%) for rice paddies.


Assuntos
Poluentes Atmosféricos , Oryza , Agricultura , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Fertilizantes/análise , Óxido Nitroso/análise , Solo
20.
Sci Total Environ ; 806(Pt 3): 151341, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34728207

RESUMO

Tropospheric ozone (O3) is the main phytotoxic air pollutant threatening food security, while ethylenediurea (EDU) can effectively mitigate O3-induced crop yield loss. EDU's mode of action, however, remains unclear, and the underlying physiological mechanisms of mitigating O3-induced crop yield loss are poorly understood. We cultivated hybrid rice seedlings under two O3 treatments (NF, nonfiltered ambient air; and NF60, ambient air plus 60 ppb O3) and sprayed foliage with 0 or 450 ppm EDU every ten days and determine photosynthesis-related traits, biomass indicators, and yield components. We found that EDU significantly increased the leaf nitrogen (N) allocation to photosynthesis (NP) and the grain N accumulation, while the grain N accumulation was positively correlated with NP and root biomass. EDU significantly increased the rice yield mainly by increasing the individual grain weight rather than the number of panicles and grains. While EDU protected from yield loss, the degree of protection was only 31% under NF60 treatment, thus EDU was unable to offer complete protection under high O3 pollution. These results will be conducive to a better understanding of the EDU protection mechanism and better application of EDU under high O3 pollution in the future.


Assuntos
Poluentes Atmosféricos , Oryza , Ozônio , Poluentes Atmosféricos/toxicidade , Poluição Ambiental , Ozônio/toxicidade , Compostos de Fenilureia , Fotossíntese , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...